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ABSTRACT

A Poisson stream of arrival rate ' and service time distribution

A,(x) has preempt resume priority over a second stream of rate XII

and distribution A (x). Abundant theoretical results exist for this

system, but severe numerical difficulties have made many descriptive

distributions unavailable. Moreover, the distribution of total time

in system of low priority customers has not been discussed theoretically.

It is shown that the waiting time sequences of such customers before

first entry into service is a Lindley process modified by replacement.

This leads to the total time distribution needed. A variety of des-

criptive distributions, transient and stationary, is obtained numer-

ically via the Laguerre transform method.

Key words: Priority queue, Preempt/resume discipline, Modified

Lindley process, total time in system, Numerical distri-
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§0. Introduction

A priority queue describes two MI/G/1 service systems interacting

through a common server. The first system, to be called system I, has

a Poisson input stream of customers of intensity XI' and independent

service times with c.d.f. Ai(x). Similarly, system II has intensity

A 11 and c.d.f. Aii(x). All interarrival times and service times are

independent of each other. A substantial literature dating back to the

fifties treats the interaction of the two customer streams when system I

customers have preemptive priority over system II customers. Abundant

results have been obtained giving first and second moments of interest

and some asymptotic results (see, e.g., Gaver [1], Heathcote [3],

Jaiswal [4], Keilson [5,8,9], Miller [18] and Prabhu (19]). The distri-

bution of random variates of interest required for system design have not

been available, however, because of Laplace transform difficulties. Man\

asymptotic results such as heavy traffic approximations for waiting times

have been flawed by lack of error bounds and disturbing relaxation time

problems.

An algorithmic procedure has been needed providing accurate numerical

distributions for effective service times, busy periods, and ergodic

waiting times. The Laguerre transform method introduced by Keilson and

Nunn [11], Keilson, Nunn and Sumita (12] and studied further by Sumita [21]

provides a framework for evaluating multiple convolutions and other con-

tinuum operations. Many of the distributions required have been obtained

previously thereby [11,12,13,14,20,21]. For the total time in system of

low priority customers in the system of interest, however, new probabilistic

4i



analysis has been needed before the Laguerre procedure is applicable.

This analysis and related asymptotic results are the focus of this

paper. The Laguerre transform will serve only as a tool, but one whose

power will be made evident hopefully through the results.

A recent paper by the authors, "The Depletion Time for '1/Gil Sys-

tems and a Related Limit Theorem" [14], discusses single server M/G/1

systems with many classes of customers and complex order of service dis-

ciplines. That paper provides a survival function bound for the time in

system of any customer at ergodicity, giving rise to a robust (but non-

exponential) limit theoretic bound for heavy traffic. In the present

paper, the significance of the service time distributions of competing

classes and of their traffic intensities is emphasized.

In Section 1, the system studied is described and the main results

are summarized. A modified Lindley process is derived in Section 2,

which represents the waiting time until first entry into service of the

k-th low priority customer. In Section 3, the Laplace transforms of

stationary distributions of interest are given, and related heavy

traffic limit theorems are established. A final section is devoted

to numerical examples. All ergodic and transient distributions des-

cribed in the previous sections are evaluated numerically using the

Laguerre transform method.
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§1. The system of interest and main results

We consider the two customer streams described in Section 0 with

arrival intensities XI and X and service times T and T with c.d.f.'s

AI(x) and Aii(x). We assume that TI and TII have finite second moments

and that the ergodicity condition pS = pI + pii < 1 holds, where

P= XIE[TI] and PIi = IIE[TII ]. The corresponding transforms are
-wTI ]  -wTI

II

denoted by ai(w) = E[e I and all(w) = E[e I]. A class I customer

.] evicts any class II customer from the service facility. h'hen that class

I customer and all subsequent class I customers with overlapping presence

complete service, the evicted class II customer resumes service. The

queue discipline of class II is FIFO. The queue discipline in class I

* is irrelevant for class II service delay provided the bus) period for

class I customers is undisturbed.

A tool we shall appeal to frequently is that of effective service

time distribution. Suppose a random service time T in the absence of

interruptions has c.d.f. A(x). Interruptions A with c.d.f. B(xl arrive

.-T
in a Poisson stream of rate X. Let a(w)= E[e w ] and 6(w)= E[e-W

e ff
Then it has been shown [4, 5] that the elapsed time T until service

eff eff [ewTeff
is completed has c.d.f. A (x) with a (w) =E ] given by

(1.1) eff = cl(w + -x(w))

In particular, for the preempt-resume system described, the effective

eff.

0 (1.2) ae w) = I + M)

a I I
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since class I customers ignore all class II customers and see their own

M/G/l system. Here oBPI(w) is the server busy period tra.sform for class I

M/G/l systems. This transform OBPI(w) satisfies the classical Takgcs equa-

tion [221

(1.3) oBPI(w) =aI(w + - IBPI(W))

Of related interest is the stationary waiting time distribution for

class I and class II customers. That for class I is given by the familiar

Pollaczek-Khintchine distribution FpKi(x) [16] with transform
-W'PKi] 1-o

"-KK(1.4) PKI1(w) E[e - Cx (w)

1 - 0l{ wE[T I]

where WPKI is the stationary waiting time for class I. For the class II"'KI

customers, the discussion of waiting time is much more difficult. Such

a customer has a waiting time before first entry into service, and may be

evicted repeatedly by streams of overlapping class I customers. For the

class II customers, the total time in system rather than the waiting time

is needed. Nevertheless, the waiting time before first entry into service

provides a stepping stone to the time in system. Let Wk be the time until

first entry into service of the k-th class II customer. It will be shown

in Section 2 that the sequence Wk has a Lindley process-like structure in

that one has

"'{W k + i f wk + 0f k k k+l k k+l -

- (I.5) W k I(T X if Wk + k+l < 0

LO kTkO



Here &k+l S kff A where Sef is the effective service time of the=k -k&k l

k-th class II customer, i.i.d. with transform given in (1.2), and Ak~l is

-.. the interarrival time between the k-th and the (k+l)-st class II customers.

The variate TX0 is the first passage time of the server backlog process

Bi(t) of class I M/G/l system from BI (0+) = X to zero [14]. The variate

X is given, as we will see in Section 2, by X d B (1_ E) with E being the

exponential variate of the unit mean. The process Wk may be called a

Lindley process [1] modified by replacement. An algorithmic procedure

will be given for evaluating the sequence of distributions of Wk recursively

via (1.5) based on the Laguerre transform method, and in turn to the sta-

tionary distribution of W V The distributions of W k are of separate inter-

est in that they display the approach to ergodicity and provides relaxation

time information numerically.

Alternatively, it will be shown that the stationary waiting time '

before first entry into service of the class II customers is given by

(1.6) 4ii(w) -PKS(w + (wI icBPi(W))

hIPKS
where ]PKS(w) E[e and Wp KS is the stationary waiting time seen by

all customers in the system when there is no priority and the service dis-

cipline is FIFO. A comparison of (1.6) with (1.1) then gives rise to the

following formal statement.

At stationaA.ty a cta.ss6 1I customeA expe-tences, before

it6 6 st ent'y into seAvice, the system P-K delay fok

-d (1.7) A X and As(X) = rXiAi(x) + XIIA 1 (x)]/X S modi-

. ed by iteruptionL at Poi.son tate I with du atcn

TBPI.

a "



-6-

§2. The modified Lindley process with replacement for Wk1

In this section we establish the recursion relations (1.5) for the

waiting times W k of the class II customers described in Section 1. The

total time in system of the k-th class II customer is then obtained using

Wk as a stepping stone.

For notational convenience, we denote the k-th class II customer by

C Let C arrive at the system at time Tk. We note that the interarrival
k' ~kV

times

(2.1) ak+l k+l k

are i.i.d. and exponentially distributed with parameter X1I! Let Ck first

receive service at time Tk and leave the system at time Tk so that

(2.2) T T +  T** = Tk + S = T + W' + S eff
(22 k Tk 1 k' tk Tk k k k k

e ff
Here Skf , the effective service time of C k is i.i.d. with transform_we f f

a Meff w" = E[ew ] given by (1.2). We note that IW and Sff are inde-
IIk k

pendent and that the total time in system, Uk, of Ck is given by

**

(2.3) Uk Tk Tk + S k f  .

Since the distribution of is known, the distribution of Wk leads to

that of Uk.

Suppose that is ,ready present when Ck leaves the system at• * k
** e ff

Tk . This is equivaient to saying that 6k l !5 1) = Wk S . Hence

k+l is given by (cf. Figure 2.1a),



w s eff

k k*

Ik, , T. --

- "k "k k+l "k

Figure 2.1.a. A,,+l < h_ + eff

BI (w,t)

d -
-- -k - k+1

T k* k+l T k+l

-" {-" Wk ' " k k - "W * k+l) - k+l

':' Ak+lI

'""k "k "k lk l

Figure 2.1b. Ak eff
,+°S
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(2.4) Wk+l = Wk + k+l if IV'k + k~l 0

where

(2,5) Sk+l = Af k

We note from (2.2) and (2.4) that the first service entry epoch of Ck,

when W R+0 1 , is

* eff **
(2.6) T =T +1+ T +1W +k =r W. + T >0

k+l k+l k+l k k k rl

since no class I customers are present at departures of class II customers.

We now suppose that C has not arrived vet when C leaves the sv\-
k+l k

tem (cf. Figure 2.1b). This means that the server becomes idle at the

departure of Ck, and C arrives at the system after a delay of - V -

subsequent to the departure of Ck. Let BI(t) be the server backlog process

of class I M/G/l system when B (0) = 0. When C k+ arrives at the system,

the server has backlog BI(-Wk - k+l ). While the server works on his back-

log, other class I customers may arrive who also precede Ckl. Hence, when

W+ k+l < 0, the waiting time of Ck+ 1 is the first passage time Tx0

dof Bi(t) from its initial load X to zero where X BI(Wk - k+l ). For

notational convenience, we define T00  0.
.-" : I 'k  S f f

The negative support of the variate IVk + *k+l + -ef -k

is contributed only by L k+l' which is exponentially distributed. Hence

the p.d.f. of Wk + k+l on the negative real axis is of the form
ix

pkXAle U(-x) with p = P[Ik + Ck+l < 0] where U(x) 1, x 0 0, and

U(x) = 0, x < 0. Hence when Wk + k+l < 0, one has

4i
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d
(2.7) X = B _ d (V1 E) w + < 0

I k k Xk k+1

where E is the exponential variate of mean one. From this we have the

following theorem.

Theorem 2.1

Let Wk be the waiting time before first entry into service of the

k-th class II customer. Then

(8kl= k + k+l if IVk + k l 0
-'(2.8) = ~

T if ' k+l < 0

where = - k+l and T is the first passage time of the server

backlog process BI(t) for class I M/G/l system from X to rero. The distri-

bution of X is given by (2.7).

The process W in (2.8) may be called a modified Lindley process in
k+l

that the homogeneous process Wk + kl is modified by a retaining boundary

at the origin with replacement at independently chosen Tx0 . We note that

-wX
the Laplace transform Sx(w) E[e of X in (2.7) can be written as

:-wB I ( X- -  E) 00 _ I t  _ Bi W

II
(2.9) BM = Ee ] X f e E[e ]dt

," 0

00 -wB (t)

The double Laplace transform f e-StE[e ]dt is given [14, 22] by
0

st -wB I (t) W ,E I (S)

(2.10) f eStE[e I]dt : -o s 1i
(  - o.I (w,' ]  - ,

-.
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Here cI(s) =f e- StE (t)dt where Ei(t) = P[BI(t) = 0]. From Equations (2.9)
0

and (2.10), one then concludes that

(2.11) Bx(W) X AII + Al{l -l(W)} -w

The following theorem can now be readily shown.

Theorem 2.2
- wT

Let Oo(w) = E[e where TX0 is given in Theorem 2.1. Then

axo(W) = (XI/(XI [ - C(X VW -X IOBPI(W)]

Proof

As shown in (2.1) of [14], one has

a [(w) (W + a Mii) {

X0 X 1 A 1 { I I 1 BPIcBI~

A11  A1 1 - c( ,){ + I I BPI'~X )Ill + Xl{I aI(W + XI - XIlOBPI(w))} - {w + 1 lBPI(w)"

The theorem then follows from the Takdcs equation (1.3). C

One easily finds that O(W) Xl IE(XI) as w + +w so that TX0 has mass

A1ii 1 (A1i) at the origin. Let rx0 (x) be the probability density of Tx0 on

the positive real axis and define yX0 (w) : f e rXO(x)dx. One then has
0

Y 0 (w) = ax0(w) A ici(Xii) and the next corollary is immediate from

Theorem 2.2.

Corollary 2.3

(a) P[Txo 0 0] : P[X 0 0] C (X

X0 I
,. 'II

(b) yXO(w) X - - Xsi I(X )CBp (w)],Xl - w (I ) I 11 II

e-
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As we will see in Section 4, Corollary 2.3 plays a key role for evaluat-

ing the distribution of Vk recursively via the Laguerre transform method.

The numerical value of Ei(AH) is therefore needed.

Theorem 2.4

*_-'Let h(s,w) = s + X {1 - (w)) - w. For each s > 0, h(s,w) is strictly

monotone decreasing in w, w > , and has a unique zero at w0 (s) /c1E(S) > 0.

Proof

'I
,..We noeta ~ )= (s + I  -){ ai(w). Then frominoe.ht: sw ~~+ AI  w

Rouche's theorem, h(s,w) has only one zero. This unique zero is attained

on the positive real axis when s > 0, since

h(s,w) = -1 - a c: (w) < -(1 - I) < 0

and h(s,O) = s and h(s,w) - as w -+ . Hence h(s,w) attains zero at

w (s) > 0. It is known that EI(s) = [s + tI - I C BPI(s)'l One then

sees, from the Tak~cs equation (1.3), that

11 1
h(s, s ) = s + A - laI (-) I -

E I(s) I I E I(s) C I(s)

s + -(s) - s - Y I BPI 0
I I BPI ~ I A I sBPI

-.'" Hence wo(s) =is, proving the theorem. .

Since h(Xii, w) is strictly monotone decreasing in w, w > 0, one can numer-

ically evaluate cI(Au) = l/wo(Xi) straightforwardly.

1 , 1

a , _ ,. _ . . .. - - M llmr m m~ m, ,m . mJ m
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Remark 2.5

We note that the numerator of (2.10) vanishes at wo(S) =
f e-E[e -wB t is regular for Re(w) " when s > 0, and the transfore

0
in (2.10) has only nonnegative support. This, in turn, implies that X0(w)

in Corollary 2.3 has nonnegative support only, as required.

It has been shown (cf. [10], p. 233, item (d)) that the ordinary

Lindley waiting time process is stochastically monotone. In particular,

for the sequence of the ordinary waiting times IL one has IV IV

k ,,2. ~epjL L Lk = 0,1,2,..., i.e., P[+l 1 > x] - P[WL > x], when IO = 0. The waiting

1.4 times may then be said to be sequentially monotone. The modified Lindley

process (2.8) is also sequentially monotone when IV = 0, as we prov'e next.
0

Theorem 2.6

Let W be defined as in (2.8) with W = 0. Then Wk are sequentiallyk k

monotone, i.e., W k> W k = 0, 1.

Proof

It is clear that W >" W" 0. Suppose W k lW Let Vk  [I k

where [X] + = max{0,X} and define the survival functions F1 .,k(X) = P[Wk > x]

and Fv~k(k) = P[Vk > x]. We note that Wk >_ Wk_ implies Vk - Vkl (cf.

[10]). From (2.8) one sees that

(2.12) FW,k+l (x) Fvk(X) F k" (O )'RXO(X) , x > 0

Here Axo(x) P[T>o > x] is the survival function of the replacement distri-

bution for the modified Lindley process. From the induction hypothesis,

one has FV,k(x) V,k-l(x), x >0 O, so that F ,kXl(X) 2! F .,K(X), x 0 O,

proving the theorem. [3

°4.
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Corollarv 2.7

(a) Let Ek = "k 01. Then E F (0)- E: )'is f monotonical lv

decreasing in k.

(b) Ew is monotonically increasing in k.

Proof

Part (a) follows from Corollary 2.3, Theorem 2.6, and (2.12). Part

(b) is immediate from Theorem 2.6.E
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53. The ergodic distribution of total time in system for low priority
customers; its heavy traffic approximation

As shown in Section 2, the sequence W of time spent before first
k

entry into service of the k-th class II customer is a modified Lindley

process with replacement. For the ordinary Lindley process, when the

virtual value Wk + &k+l is negative, replacement is at zero. For our

case replacement distribution has support on the positive continuum as

well as at zero and the standard Wiener-Hopf methods must be altered.

The compensation method introduced earlier in [6, 7] and presented in

simplified form in [ 2], provides a quick analysis. One sees that the

required c.d.f. F 1 1 (X) of Wk at ergodicity is given by

:..(3.1) F I(x) =fC(x-yl)dG(y

Here G (x) is the ergodic green distribution of the underlying homogeneous

process h =H.H + and C(x) is the c.d.f. of the compensation. In
k-,l k k+l'

transform notation (3.1) becomes

H

(3.2) ¢wl(w) : X(w)y(w)

where

;:iH I
(3.3) y (w)

eff

SII -l (W)

.4

and

* (3.4) X(w) = K[o (W) xII -



,.

In (3.3) and (3.4), a (w) and OXO(w) are described in (1.2) and

Theorem 2.2, respectively. K is a normalization constant.

Consider next the M/G/l system for which XS = I and
I XIIII

As(x) = AI(x) + Aii(x) describing the service stream seen by

the server when the two classes are given equal priority. If the

service discipline is FIFO, the Pollaczek-Khintchine transform for

the stationary waiting time is

,.. 1 - pS

(3.5) WP(w).: ~PKS1- S w

1 - PS wE[Ts]

The statement in (1.6) may now be given formally.

Theorem 3.1

Let PS = XsEITs] = 01 PII < 1. Then the ergodic distribution of

the time until first entry into service for class II customers with FIFO

discipline has the transform

(3.6) liI (w) W (PKS(w + Il - AI0BPI)

Proof

Let Z(w) = w + I a (iBPl(w). From Theorem 2.2 and (3.4), one has

X(w) = -KIZ(w)/(XII w). From (1.2) and (3.3), one also has

y H(w) = 'II . Hence from (3.2), one sees that

O= W1 XI I (a w))]-I

::: €1 'I(w) = X(w)sH(w) = - A1il1l ali(:(w) "

U
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Since w = Z(w) - X1{1 - OBPI(W)} = Z(w).i{1 - a1 (Z(w)), one then

has

K1 Z(w)
. Z(w) - l _ - l(Z(w))} - l (w)

Dividing both the numerator and the denominator by Z(w), the above equa-

tion leads to

= K

WIT1 - cs(Z(w))
- 0S Z(w)E[Ts]

where a a (w) + I, a(w). From (0+) 1 one easily finds
e S SI ) +  I I WII

that Kl = -S and the theorem follows from (3.5).

From Theorem 3.1 and (2.3), the transform of the time in system of class II

customers at ergodicity is immediate. One has:

Theorem 3.2

Let pe < 1 and let U W e be the total time in system of
S  1I = II I I

class II customers at ergodicity. If Ui(w) = E[e ], then

(3.7) UII(w) ; PKS ( w + XI - OIOBPI(w))aII(v + XI -IaBPI(
w ))

The transform results given in (1.2), (1.3), (3.5), Theorem 3.1 and Theorem

3.2 lead to the following relations between the first moment of various

variates of interest.
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(3.8a) E[Ts] : E[TI] E[TII ]

E[T I]
(3.8b) E[TBPI] - I

eff E[T III
(3.8c) E[SII ] : E[TII](1 + )IE[TBPI] : 1 - I

___ S _ E[T S]

(3.8d) E[wPKS] ( -s

2(1 P2(l E[T S]
E [(W'PKS1

(3.8e) E[WII] E[ PKS](1 + )IE[TBPI]) = E I

- elf- E[WpKS] +. E[TII]

eff EWKI ET 1(3.8f) E[UII] E[IW1I] + E[TII I = -

The heavy traffic limit theorem for class II customers can now be given.

Theorem 3.3

Let the competing service times Ti, TII have finite second moments.

Let (Xj , Xiij ) be a sequence of arrival rates for which XI = K X ,

K > 0, and let pS - 1-. Then both W11/E[W 11 ] and U11 /E[U 1 I1 converge in

distribution to the exponential variate with mean one.

Proof

When AI. and X are in fixed ratio, the system service time TS has

the transform a () ( /A )ai(w) + (XII /XS)a5 (w) so that the distri-
:'1 S 1 11 . I

bution of Ts does not change with j. From Theorem 3.1, (3.5) and (3.8e),

one has

, °
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(3.9) - S
WII 1- ( w + I ( )

"'" 1 { 1 - 0 oBpI _ )
II

i ;]i - °"S'S BPiii I  i

where x(W) = - ¢x(w))/wE[X] and E[WI] = II Further, from (3.8)

and (3.9),

(3.10) ((( w ) = (1 - p)[1 * *)l'II oS°S(-S - I BP I I
11 KS I11

One may then employ the Taylor expansion with remainder of both a (w) and

SoBPI(w) out to the linear term in w, and nroceed classically invoking the

continuity theorem for characteristic functions to find

(3.11( ) 1+-

WII

demonstrating the convergence of WI1II/E[W,1 ]. The convergence of UII/E[UII]

is immediate since the effective service time is bounded stochastically

from above.

Remark 3.4

One could also inquire about the limiting behavior when X and X

are not in fixed ratio. For application of heavy traffic approximation,

however, one has specified values of X1 and X1 I with o= 1-c for C > 0,

small. The approach path of XI. and X to the values I and I is then
i. Irel1a11

• " irre levant.

0:i
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_4. Evaluation of the distributions of interest via the Laguerre transform

In this section the distributions of interest described in the pre-

vious sections are evaluated numerically via the Laguerre transform. The

reader is referred to [11,12,21] for the underlying theory of the Laguerre

transform. All figures are given at the end of this section. The follow-

ing example is considered:

System I: High priority classII
ET ] 10 IX x - x -x -3x]

-I = , 1 x = P[T I > J e + e + e

E[T 10 = XlE[TI] = 0.278

System II: Low priority class

]! x-X e- 2
" l A ' 11(x) = P[T > x] .[e

3
E[TIII =- = X AIIE[TII] 0.375

Total system

3 1
AS I +A I =  As(x) = P[Ts > xj = .+ A(x) A W Ai (x)S* IIiSSi1 31

E[Ts] : .- E[TI] + t- E[TII = 0.870 p o + II 0653

(A) Ergodic distributions of W and U
II I

* From the transform results (1.2), (1.3) and (3.5), one obtains

easily the corresponding (generalized) probability densities as given

below.

o.4;



-20-

n%°, c x "' x (X )'I~ (~)

(4.1) sBPI(X) e (n+l) a
n=O

eff CO x >Ix) (n
(4.2) S (x) = " {e aI (x) )*s n(x)n=OL n! -I I' BPI

n=

(4.3) fPSX) = (1 - M)6(x) + fPKS(X)PKS S PKS

where

+w

(4.4) fKS(X) (I WS1 A Sx{ 1(n)n=l E[T 5] S

Here a (n) (x) is the n-fold convolution of a(x) with itself. The asterisk

also denotes convolution and 6(x) is the delta function.

Similarly from Theorem 3.1 and Theorem 3.2, the probability densities

fwii(x) and fUii(x) take the forms

(4.5) f1 ii(x) = (1 - pS)6(x) + f+WII' I (x)

* where

(4.6 fl (+ = -?XlX (' Ix)n  + (nPI(x)

(4.6) fl+ W Y {e nI fPKs(x))*S (n)
n=O

and

(4.7) fUll(X) = (1 - )5f (x) f+I(XI*s7 (x)

The Laguerre transform enables one to evaluate systematically all of

these probability densities which heretofore have been behind "the
IJ
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Laplacian curtain". The Fourier-Laguerre sharp coefficients of a

S." and aii(x) are readily obtained analytically. Using the relevant opera-

tional properties of the transform, Equations (4.1) throuvh (47) lead

to the coefficients of each density. They, in turn, can be converted to

the coefficients of the corresponding survival functions, thereby bNTass-

" ing numerical integration. The final inversion from the Laguerre coeffi-

cients to function values is straightforward. In Figure 4.1, the survival

functions SB(X) = P[TBPI > x] and - (x) = eff > x] are plotted.

Figure 4.2 depicts the survival functions FpKs(x) = P[WPKS > x

FWiI(X) = P[W 11 > X] and TUII(x) = P[UII > x]. We note that both W pKS

and WI have mass 1 - P at the origin.

(B) Modified Lindley process with replacement

It has been seen in Theorem 2.1 that the waiting time before first

entry into service, Wk, of the k-th class II customer follows the modified

Lindley process given in (2.8), i.e.,

.fIk + k+l if Igk + 0kl 0

(4.8) Wk~

TX0 if Wk + k+1 < 0

eff '0
where ~k = S k A kl and the transform a (w) = E[e ] is given

'0
in Theorem 2.2. As shown in (2.3), the total time spend in the system

Uk by the k-th class II customer is then given by

.ff

(4.9) Uk = k  Sff
k kk
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We now show how these transient distributions can be evaluated via the

Laguerre transform.

Let a(x) be the p.d.f. of the i.i.d. random variates V The Laguerre

sharp coefficients (an) of a(x) are easily obtained from those corre-
n -

sponding to skff and Ak 1. From Corollary 2.3, the variate TXO has mass

R= 11i(AH) at the origin, which can be calculated using Theorem 2.4.

in our example, R0 = 0.848. The probability density rX0(x) of TX0 on the

positive real axis has the Laplace transform y O(w) given in Corollary 2.3.

The Laguerre sharp coefficients (r:) of rx(x) are then obtained, using

Corollary 2.3(b), from those corresponding to T and A Let
BPI k

Ek = P[w = 0] and let fk(x) be the probability density of Wk on (0,-) so

that Ek + f fk(x)dx = 1. Assuming that Ek and the Laguerre sharp coeffi-
k 40

cients (f n(k))0 of fk(x) are known, we next establish an algorithm for

obtaining Ek. 1 and (f (k+l)) 0 in terms of (a n)_ Rcc (rn)0 , E and

U Letn 0 n _e th0' nhs

Let k+l (x) be the probability density of Wk + One then has

(4.10) k+ l(x) = Eka(x) + f(x)*a(x) , - < x <

The associated Laguerre sharp coefficients (f(k+l)) of (x) are then
n

given by

00

(4.11) f (k~l) E an + a f(k) , -- < n < cnmk-OI n-m m
m= 0

k.Let fk1(X) f (x)U(x) where U(x) = 0, x < 0 and U(x) = 1, x - 0. The

coefficients (f+#(k.l))o of f+ (x) are found from
n 0"~
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.71~

(4.12) fo (k+1) = - Y f (k+1) •f (k+1) f (k+l) 1n-1 n n n

Let k+l Pk + k+1 < 0]. Then pk+l :0 f  ,(x)dx :k (

so that

(4.13) Pk+l : 1 + 2 f2n~l (k+l)
n-O

From (4.8), one finally has

(4.14) Ek 1 = Pk~lRo

and

(4.15) n (k+l) fn (k+l) + p g , n - 0n n K-+l n

Equations (4.11) through (4.15) enable one to calculate E and (f (k+:
k+ n

recursively for k : 0,1,2,..., starting with W0  0 (i.e.: 1, =

and f# (0) = 0, n 1 1). The coefficients (fu(k))o corresponding to U are
n (fn~k) corsodn0oU r

given from (4.10) by

;. eff4t  n , f ()eff"

(4.16) fun(k) EkS n sr nUn: k = n - m

where (snf) are the Laguerre sharp coefficients of sei (x).n.. 0x1

In Figure 4.3, the survival functions F W = P[Wk > x are nlottod

4 for k = 1,2,3,4,5,10,20,30,40,50 and n !5 x 5 10. The absolute dirfercnce

between Pis(x) and its ergodic survival function F x) : f (\')d '"F ~-6 I Wobtained in (A) is bounded by 10 for 0 < x 5 10, usinQ the first :I

Laguerre coefficients. This assures numerical stability and accuracy

of the Laguerre transform procedure. W.e note that t stochastic mono-

.. tonicity of W 'k in k given in Theorem 2.6 can be observed in Fig:ure 4...
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Figure 4.4 and Figure 4.5 show the convergence of E to I - cS and that

of E Wk] to E[WII] as k - o, respectively. Both Ek and'E[Wk] are calcu-

lated using the Laguerre sharp coefficients. It has been shovn [15, 211

that the Laguerre sharp norm defined by

(4.17) 11fl12 f"2

provides a distance between any two distributions. In Figure 4.6 this

Laguerre sharp norm distance between W and W for I - k - 50 is exhibited
k II

thereby quantifying the rate of approach to ergodicity. These distances

also provide convenient stopping criterion for the computation. One can

see that for k > 25 the distance is bounded by 0.01. Finally, in Figure

4.7 the survival functions FUk(N) = P[Uk > x] are plotted for k = 1,2,3,4,

5,10,20,30,40,50 and 0 5 x - 10, All computations were done on a DEC 10

computer in a timesharing mode using APL as the programming language.

Relevant formulae were usually coded in a straightforward way using the

first 150 Laguerre coefficients. The results displayed here were tyNpically

obtained with CPU time in seconds.

i * , , . _ _ -• umm ram m mm mm m*,m. mm .,, " --* .. ..... ...... ...........
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